Efectos del ayuno intermitente sobre el metabolismo, la función cognitiva y el envejecimiento: una revisión de estudios en humanos y animales
Investigación Originales
Erik Cubeles-Juberias, Laura Herrero, María del Mar Romero
Organismos colaboradores:
This study was supported by the Spanish Ministry of Science and Innovation (MCIN/AEI) (PID2020-114953RB-C21 to LH, co-funded by the European Regional Development Fund [ERDF]), the Biomedical Research Centre in Pathophysiology of Obesity and Nutrition (CIBEROBN) from the Instituto de Salud Carlos III (Grant CB06/03/0001 to LH), the Merck Health Foundation (to LH), the Government of Catalonia (2021SGR00367 to LH).
DOI: 10.53435/funj.00924
Vol. 13, Núm. 3 (2023): Diciembre 2023
Resumen:
La obesidad tiene un impacto significativo en la sociedad; sin embargo, existen pocas estrategias de tratamiento eficientes a largo plazo disponibles. La popularidad del ayuno intermitente (AI) frente a la restricción calórica ha aumentado debido a su estrategia menos severa de modificar sólo el patrón de alimentación y no restringir el total de calorías ingeridas. Los estudios clínicos sobre AI han tenido limitaciones y tendieron a centrarse únicamente en la pérdida de peso corporal, por lo que se requieren estudios controlados en animales para establecer las bases fisiológicas de AI. La presente revisión se centra en los efectos del AI como un nuevo enfoque potencial para perder peso, incluidos sus efectos sobre el metabolismo, la función cognitiva y el envejecimiento. Se ha demostrado que el AI reduce eficazmente el peso corporal y la resistencia a la insulina mediante una mejora en el metabolismo de los lípidos, la inflamación, la función cognitiva y la neurodegeneración. Las investigaciones futuras deberían incluir estudios con animales de experimentación para dilucidar los mecanismos implicados. También serán necesarios estudios en humanos a largo plazo para determinar qué forma de AI es la más beneficiosa, así como sus efectos a largo plazo.
Palabras Clave:
ayuno intermitente, glucosa, ácidos grasos, obesidad, sobrepeso, inflamación, roedores, pérdida de peso
Bibliografía:
-
World Health Organization (WHO). Accessed February 17, 2023. https://www.who.int/
-
Ginsberg HN, Maccallum PR. The Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus Pandemic: Part I. Increased Cardiovascular Disease Risk and the Importance of Atherogenic Dyslipidemia in Persons With the Metabolic Syndrome and Type 2 Diabetes Mellitus. J Cardiometab Syndr. 2009;4(2):113. doi:10.1111/J.1559-4572.2008.00044.X
-
Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. 2017;39:36. doi:10.1016/J.ARR.2016.08.005
-
Liu D, Huang Y, Huang C, et al. Calorie Restriction with or without Time-Restricted Eating in Weight Loss. New England Journal of Medicine. 2022;386(16):1495-1504. doi:10.1056/NEJMOA2114833/SUPPL_FILE/NEJMOA2114833_DATA-SHARING.PDF
-
Vasim I, Majeed CN, DeBoer MD. Intermittent Fasting and Metabolic Health. Nutrients 2022, Vol 14, Page 631. 2022;14(3):631. doi:10.3390/NU14030631
-
Longo M, Zatterale F, Naderi J, et al. Molecular Sciences Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Published online 2019. doi:10.3390/ijms20092358
-
Aoun A, Ghanem C, Hamod N, Sawaya S. The Safety and Efficacy of Intermittent Fasting for Weight Loss. Published online 2020. doi:10.1097/NT.0000000000000443
-
Dote-Montero M, Sanchez-Delgado G, Ravussin E. Effects of Intermittent Fasting on Cardiometabolic Health: An Energy Metabolism Perspective. Nutrients 2022, Vol 14, Page 489. 2022;14(3):489. doi:10.3390/NU14030489
-
Varady KA, Hellerstein MK. Alternate-day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007;86(1):7-13. doi:10.1093/AJCN/86.1.7
-
Harvie MN, Pegington M, Mattson MP, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond). 2011;35(5):714-727. doi:10.1038/IJO.2010.171
-
Hofer SJ, Carmona‐Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med. 2022;14(1). doi:10.15252/EMMM.202114418
-
Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848-860. doi:10.1016/J.CMET.2012.04.019
-
Seidler K, Barrow M. Intermittent fasting and cognitive performance – Targeting BDNF as potential strategy to optimise brain health. Front Neuroendocrinol. 2022;65:100971. doi:10.1016/J.YFRNE.2021.100971
-
Nikita F. Intermittent Fasting and Brain Health: Efficacy and Potential Mechanisms of Action. OBM Geriatrics 2020, Vol 4, 121. 2020;4(2):1-15. doi:10.21926/OBM.GERIATR.2002121
-
Deota S, Panda S. Aligning mealtimes to live longer. Science (1979). 2022;376(6598):1159-1160. doi:10.1126/SCIENCE.ADC8824
-
Smith NJG, Caldwell JL, van der Merwe M, et al. A Comparison of Dietary and Caloric Restriction Models on Body Composition, Physical Performance, and Metabolic Health in Young Mice. Nutrients. 2019;11(2). doi:10.3390/NU11020350
-
Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients. 2019;11(10). doi:10.3390/NU11102442
-
Hong M, Ling Y, Lu Z, et al. Contribution and interaction of the low‐density lipoprotein cholesterol to high‐density lipoprotein cholesterol ratio and triglyceride to diabetes in hypertensive patients: A cross‐sectional study. J Diabetes Investig. 2019;10(1):131. doi:10.1111/JDI.12856
-
Pak HH, Haws SA, Green CL, et al. Fasting drives the metabolic, molecular, and geroprotective effects of a calorie restricted diet in mice. Nat Metab. 2021;3(10):1327. doi:10.1038/S42255-021-00466-9
-
Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25(1):42. doi:10.1016/J.TEM.2013.09.002
-
García-Rodríguez D, Giménez-Cassina A. Ketone Bodies in the Brain Beyond Fuel Metabolism: From Excitability to Gene Expression and Cell Signaling. Front Mol Neurosci. 2021;14. doi:10.3389/FNMOL.2021.732120
-
Manolis AS, Manolis TA, Manolis AA. Ketone Bodies and Cardiovascular Disease: An Alternate Fuel Source to the Rescue. International Journal of Molecular Sciences 2023, Vol 24, Page 3534. 2023;24(4):3534. doi:10.3390/IJMS24043534
-
de Cabo R, Mattson MP. Effects of Intermittent Fasting on Health, Aging, and Disease. New England Journal of Medicine. 2019;381(26):2541-2551. doi:10.1056/NEJMRA1905136/SUPPL_FILE/NEJMRA1905136_DISCLOSURES.PDF
-
Vasim I, Majeed CN, DeBoer MD. Intermittent Fasting and Metabolic Health. Nutrients. 2022;14(3). doi:10.3390/NU14030631
-
Anwer H, Morris MJ, Noble DWA, Nakagawa S, Lagisz M. Transgenerational effects of obesogenic diets in rodents: A meta-analysis. Obes Rev. 2022;23(1). doi:10.1111/OBR.13342
-
Wade G, McGahee A, Ntambi JM, Simcox J. Lipid Transport in Brown Adipocyte Thermogenesis. Front Physiol. 2021;12:787535. doi:10.3389/FPHYS.2021.787535
-
Varady KA, Cienfuegos S, Ezpeleta M, Gabel K. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol. 2022;18(5):309-321. doi:10.1038/S41574-022-00638-X
-
Meier-Ruge W, Bertoni-Freddari C, Iwangoff P. Changes in Brain Glucose Metabolism as a Key to the Pathogenesis of Alzheimer’s Disease. Gerontology. 1994;40(5):246-252. doi:10.1159/000213592
-
Gudden J, Arias Vasquez A, Bloemendaal M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Published online 2021. doi:10.3390/nu13093166
-
Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience. 2013;239:228-240. doi:10.1016/J.NEUROSCIENCE.2012.10.014
-
Faris MAIE, Kacimi S, Al-Kurd RA, et al. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutrition Research. 2012;32(12):947-955. doi:10.1016/J.NUTRES.2012.06.021
-
Hwangbo DS, Lee HY, Abozaid LS, Min KJ. Mechanisms of Lifespan Regulation by Calorie Restriction and Intermittent Fasting in Model Organisms. Nutrients 2020, Vol 12, Page 1194. 2020;12(4):1194. doi:10.3390/NU12041194
-
Liu D, Huang Y, Huang C, et al. Calorie Restriction with or without Time-Restricted Eating in Weight Loss. New England Journal of Medicine. 2022;386(16):1495-1504. doi:10.1056/NEJMOA2114833/SUPPL_FILE/NEJMOA2114833_DATA-SHARING.PDF
Texto Completo:
PDF